AutoML Conference

Goals

The first international conference on automated machine learning (AutoML) is the premier gathering of professionals focussed on the progressive automation of machine learning (ML), aiming to develop automated methods for making ML methods more efficient, robust, trustworthy, and available to everyone. A special focus of the AutoML conference lies on openness: via sharing of code, we hope to facilitate a culture of open collaborations across academic and industrial partners.

Keynote Speakers

TBA 2
Researcher Company
TBA 1
Prof. University of Y

Organizers

Frank Hutter
General Chair
University of Freiburg &
Bosch Center for Artificial Intelligence
Mihaela van der Schaar
PC Chair
University of Cambridge
Marius Lindauer
PC Chair
Leibniz University Hannover
Isabelle Guyon
PC Chair
INRIA, University of Paris-Saclay
Colin White
Local Chair
Abacus.AI
Joaquin Vanschoren
Joaquin Vanschoren
Tutorial Chair
Eindhoven University of Technology
Alexander Tornede
Review Workflow Chair
University of Paderborn
Theresa Eimer
Diversity Chair
Leibniz University Hannover

Senior Area Chairs

Debadeepta Dey
NAS
Microsoft Research
Aaron Klein
HPO
AWS Research Berlin
Erin Grant
Meta-Learning
UC Berkeley
Roman Garnett
Bayesian Optimization
Washington University in St. Louis
Carola Doerr
Evolutionary Algorithms CNRS, Sorbonne University
Erin LeDell
Erin LeDell
AutoML Systems
H2O.ai
Alex Smola
Alex Smola
AutoML Systems
AWS Machine Learning
Alexandra Faust
Alexandra Faust
AutoRL
Google Brain
Marc Schoenauer
Stochastic and Multi-objective Opt.
INRIA Saclay
Hai Li
Hai Li
NAS
Duke University
Jan Hendrik Metzen
NAS
Bosch Center for Artificial Intelligence
Jane Wang
Meta-learning DeepMind
Max Jaderberg
Max Jaderberg
AutoRL
DeepMind
Bernd Bischl
Bernd Bischl
Trustworthy AutoML
LMU Munich &
MCML
Heike Trautmann
Multi-Obj. Opt. & EAs
University of Münster
Michèle Sebag
Meta-Features
CNRS & Univ. Paris-Saclay
Lars Kotthoff
AutoAI
University of Wyoming
Felix Mohr
Felix Mohr
Tabular AutoML
Universidad de La Sabana
Matthias Poloczek
Matthias Poloczek
Bayesian optimization
Esteban Real
Evolutionary AutoML
Google Research / Google Brain Team
Wei-Wei Tu
Wei-Wei Tu
AutoML challenges
4Paradigm Inc., China and ChaLearn, USA